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Abstract. The quark propagator in the presence of an arbitrary gluon field is calculated gauge and Lorentz
covariantly order by order in terms of powers of the gluon field and its derivatives. The result is independent
of the path connecting the ends of the propagator, and the leading order result coincides with the exact
propagator in the trivial case of a vanishing gluon field.

The quark propagator S(z,y; A) = (iY —m)~!(z,y)! with
VH = 0t —igA* for a quark of mass m in the presence of
a gluon field A* plays an important role in many investi-
gations of quantum chromodynamics. Integrating out the
gluon field, we get the physical quark propagator:
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where Sqcop (A) is the QCD effective action with the quark
field integrated out. The propagator S(z,y; A) is Lorentz
covariant and under a color gauge transformation 4, (z) —
V(2)Au(z)VT(z) —i/gV (x)[0*VT(z)] it transforms as

S(z,y; A) = 8 (2, A) = V(2)S(z, y; AVI(y) . (2)

Except for the formal expression of S(z,y; A), an expan-
sion for S(z,y; A) in terms of the local gluon field A is ex-
pected and plays a key role in its applications. Note that
the bilocal transformation law (2) prohibits the naive ex-

pansion ZCn(x—y)On [A(2)] for S(z,y; A) with C,, (z—y)

being a gluon field independent coefficient and O,,[A(z)]
a local operator depending on the gluon field A, (z), since
it is impossible for a local operator O, [A(z)] to transform
bilocally. We will set up a modified expansion by multiply-
ing the naive expansion by a local A, (x) dependent “phase
factor” a[z—y; A(x)] with bilocal transformation law a[z—
y; A(2)] = a'lz — y; A(2)] = V(2)ale — y; A(2)[Vi(y),

# Mailing address
L Our formulae are given in Minkowski space with Bjorken—
Drell conventions.

S(x,y; A) = alz —y; A(z)] ,

(3)

which will match the transformation law (2). Then (1)
implies that we can expand the physical quark propagator
as follows:

ZCn (x —y)Op [A(x)]

n
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which can be treated as a gauge covariant modified oper-
ator product expansion for the quark propagator.

In the literature, the most simple approximation for
the expansion of S(z,y; A) is based on the perturbation
expansion
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where the expansion can be calculated up to arbitrary
orders. The result can be directly expressed in terms of
powers of the gluon field and its differentials, but to any
fixed order of the calculation, gauge covariance is violated.
Another approximation is the so called static approxima-
tion proposed by Brown and Weisberger [1] and Eichten
and Feinberg [2]. By neglecting the spatial part of ¥V, it
leads to
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where the path in the integral is the straight line from
y to x, and the path ordering is Ag(z) to the left, -- -,
Ap(y) to the right. The neglected spatial term can subse-
quently be taken into account as a perturbation [3]. This
formalism keeps the gauge covariance of the propagator,
but Lorentz covariance is lost; it even does not coincide
with the exact propagator in the trivial case of a vanish-
ing gluon field. Recently, Gromes reinvestigated the prob-
lem [4]. He, in terms of path ordered exponentials, wrote
the first order perturbation theory as a non-perturbative
expression which has the correct behavior under Lorentz
and gauge transformations. His result is only at the lowest
order; the existence of path ordered exponentials makes
the expression very complex and causes the problem of
path dependence. It is the purpose of the present work
to invent another path independent calculation formal-
ism which can keep the advantages of different formalisms
mentioned above:

(1) The expansion can be calculated up to arbitrary or-
ders.

(2) The result can be directly expressed in terms of pow-
ers of the gluon field and its differentials and it coin-
cides with the exact propagator in the trivial case of
a vanishing gluon field.

(3) The result is gauge and Lorentz transformation co-
variant.

(4) There is no path dependence of the result.

We start by writing the quark propagator as follows:
S(z,y; A) = (2| QY +m)(E — V2 —=m?)y) . (7)

where E—V2—m? = (iY —m)(iY +m) = (i¥Y +m)(iy —m)
with £ = Z[y*,v"]F,, and F,, = IVu, Vil = 9,4, —
0A, —ig[A,, AL

The next step is to calculate the matrix element
(z|(iY +m)(E—V?—m?)~!|y) which in momentum space
can be written as

(@ (Y +m)(E -V —m?) " y)

= [ G 6k )

x[(k+iV,)? + B(z) —m? ™1 . (8)
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Conventionally, to directly perform a Taylor expansion
over the operator V¥ and E(z) will lead to the result.
The gauge covariance in this calculation program is not
obvious, since the operator V¥, once acting on the final
unity 1, gives —igA*(x), which is not a gauge covariant
quantity. Only if V# and E(x) are composed of commuta-
tors such as [V#, VY] and [V, E(x)], the gauge covariance
is explicit realized. We need a formalism to explicitly ex-
hibit this gauge covariance.

Consider
s o) s o)
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with the function F' and the operation (AdA)™, introduced
in [5], defined by
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Equation (9) can be written
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We find that all terms in (11) are gauge covariant. For
convenience of the expansion we assign to each V# a mo-
mentum order p; then the terms O(p?) in (11) are those
commutators with at least four V£ derivatives.

In terms of the F function, (10) tells us that the term
k* +iV¥ can be expressed in terms of the % dependent
but gauge covariant quantity F multiplied by some %
dependent exponential “phase factors”. Applying this to
(8), we have
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where the V, commute with z. In the last equality, we
have dropped the total momentum space derivative terms

d'k iV 2
e 5
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Equation (12) implies

S(w,y; A) = S[z — y; A(w)] alv — y; A(x)] ,
with S[z — y; A(z)] being defined by

SleiA@) = [ GelFon(o) + +m)
x[(k + For(2))? + Ea(x) —m?~te %% (15)
alz; A(z)] = e V=1, (16)

So the quark propagator in the presence of a gluon field
consists of two parts: one is S[z — y; A(z)] which can be
seen as a generalized Fourier transformation of the mo-
mentum space quark propagator in the presence of a local
gluon field; the other is a bilocal exponential “phase fac-
tor” alz — y; A(x)]. We now discuss these separately in
detail.

For S[x — y; A(x)], note that under the gauge trans-
formation V'(x), V# transforms as V¥ — V(z)VAVT(z)
which leads to F* (V,, &) — V(2)F#* (V,, &) Vi(z)
and E (Va, a@) — V(z)E (Va, %) Vi(x). Equation (15)
then tells us that S[z; A(z)] obeys the transformation rule

Slz; A(x)] = V(2)S[z; A(2)]V(2) . (17)

To calculate S[z — y; A(z)], we can first expand its in-

tegrand in terms of powers of commutators of V#, and
denote by I,, (k, 2; A) the nth order of it, i.e.
(For+§ +m)[(k+ For)* + Egp(w) —m? ™!
0
= I, |k, —;A) , 1
S (ki) (18)
n=0

with the convention that a% is always at the r.h.s. of k.

It is easy to find
A) _k+m _ 1

0
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which is just the free quark propagator in momentum
space. Further with the help of (11) and (13), we find
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Correspondingly we can write
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After momentum integration (23) and (
= 2.6l

previously in (3). The leadlng term Solz; A(z)] = Co(2)
with Og[A(z)] = 1 is just the exact propagator in the
trivial case of a vanishing gluon field,

: 4, o-ikz
Solz; A(z)] = /((21771;156—771

Now, we come to a discussion of the exponential “phase
factor”. It satisfies the constraints

al0; A(2)] = 1.,

) will lead to

the expansion S[z; A(x x)] mentioned

(25)
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In the literature, these constraints usually lead to the path

ordered non-integratable phase factor Pe' Jy 4z Au(z) [6],
which depends on the path. Our result instead only relies
on the end points x,y and is independent of the path.
Except the formal definition of a[z — y; A(x)], the explicit
expression of alx — y; A(x)] can be obtained with the help
of the Baker-Hausdoff formula

alr —y; A(w)] = [T Veer ] =0 :
Z=r—y
(27)
where C(z, z) is defined by
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Note that the C(z,2) do not include the pure operator
Oz, again, all the 9, in the C(x, z) are already acting on
the gluon field A,(x) and the gluon field dependence in
C(z, z) is local at the space-time point z.

The gauge transformation covariance of a[z — y; A(z)]
can be proved as follows: since under the gauge transfor-
mation V(z), the V# transform as V¥ — V(2)VAVT(z);
the alz — y; A(x)] then transform as

alr —y; Ax)] — [e_v(””)z'vmw(m)l}
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Combining (17) and (29), we find our result that the quark
propagator (14) is gauge covariant:

S, y: A) = V(@)S(z,y: AV (y) - (30)
Similarly since the Lorentz covariance for S and a is ex-
plicit, our resulting propagator is explicitly Lorentz co-
variant.

In conclusion, we have factorized the quark propagator
S(z,y; A) by a generalized Fourier transformation of the
momentum space quark propagator S[z — y; A(z)] in the
presence of a gluon field and a path independent “phase
factor” ajxr — y; A(z)]. The two parts are all only depen-
dent on the gluon field at the local space-time point x.
The formalism is gauge and Lorentz covariant; it coin-
cides with the exact propagator in the trivial case of a
vanishing gluon field.
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